SVR12 results from the Phase II, open-label IMPACT study of simeprevir (SMV) in combination with daclatasvir (DCV) and sofosbuvir (SOF) in treatment-naïve and -experienced patients with chronic HCV genotype 1/4 infection and decompensated liver disease

Reported by Jules Levin
AASLD 2015 Nov 13-17 San Francisco, CA

Eric Lawitz,1 Fred Poordad,1 Julio Gutierrez,1 Thomas N Kakuda,2 Gaston Picchio,3

Greet Beets, 4 Ann Vandevoorde, 4 Pieter Van Remoortere, 2 Bert Jacquemyn, 4 Gemma Quinn, 4 Donghan Luo, 2 Sivi Ouwerkerk-Mahadevan, 5 Leen Vijgen, 4 Veerle Van Eygen, 4 Maria Beumont 5

1Texas Liver Institute, University of Texas Health Science Center, San Antonio, TX, USA;

2Janssen Research & Development LLC, Titusville, NJ, USA; 3Janssen Research & Development, San Diego, CA, USA; 4Janssen Infectious Diseases BVBA, Beerse, Belgium; 5Janssen Research & Development, Beerse, Belgium

IMPACT: Conclusions

- Treatment for 12 weeks with SMV, SOF, and DCV resulted in 100% response rate; all 19 Child-Pugh A patients and all 21 Child-Pugh B patients achieved SVR12
 - High virologic response was observed regardless of Child-Pugh class (<7 or 7–9) or the presence of resistance-associated variants at baseline
- This 3-DAA combination was generally safe and well tolerated
 - No discontinuations due to adverse events
 - No deaths

SVR12 results from the Phase II, open-label IMPACT study of simeprevir (SMV) in combination with daclatasvir (DCV) and sofosbuvir (SOF) in treatment-naïve and -experienced patients with chronic HCV genotype 1/4 infection and decompensated liver disease

Eric Lawitz,¹ Fred Poordad,¹ Julio Gutierrez,¹ Thomas N Kakuda,² Gaston Picchio,³ Greet Beets,⁴ Ann Vandevoorde,⁴ Pieter Van Remoortere,² Bert Jacquemyn,⁴ Gemma Quinn,⁴ Donghan Luo,² Sivi Ouwerkerk-Mahadevan,⁵ Leen Vijgen,⁴ Veerle Van Eygen,⁴ Maria Beumont⁵

Introduction

- Effective and well-tolerated treatments are needed for HCV-infected patients with decompensated cirrhosis
 - Regimens that do not contain ribavirin are highly desirable in this patient population
- The IMPACT study assessed for the first time the combination of SMV, SOF, and DCV, three DAAs with different mechanisms of action and non-overlapping resistance profiles, for 12 weeks in HCV genotype 1- or 4-infected patients with portal hypertension or decompensated liver disease
- Results are presented from the primary analysis of IMPACT

DAA, direct-acting antiviral agent; DCV, daclatasvir, HCV, hepatitis C virus; SMV, simeprevir, SOF, sofosbuvir

IMPACT: SMV + SOF + DCV for 12 weeks in patients with decompensated liver disease (N=40)

- Patient population: treatment-naïve and treatment-experienced (prior pegIFN ±RBV therapy) patients with chronic HCV GT1 or 4 infection with either evidence of portal hypertension or decompensation
- Intensive PK analysis performed at Week 2 and Week 8
- Primary efficacy endpoint: SVR12 (intent-to-treat population)

IMPACT: Key entry criteria

- Absence of co-infection with HBV or HIV-1/-2
- No prior treatment with a DAA
- Absence of HCC
- Total serum bilirubin ≤3 x ULN
- Platelet count ≥30,000/mm³
- Albumin ≥2.5 g/dL
- INR ≤2.5
- eGFR ≥30 mL/min (Cockcroft-Gault equation)

DAA, direct-acting antiviral agent; eGFR, estimated glomerular filtration rate; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; HIV, human immunodeficiency virus; INR, international normalized ratio; ULN, upper limit of normal

Additional participation requirements:

- Stable hepatic function
- •CP A: CP score <7 with documented portal hypertension, confirmed by the presence of esophageal varices on gastroscopy or HVPG ≥10 mm Hg
- •CP B: CP score 7-9
- Hemoglobin ≥10 g/dL
- ALT and/or AST ≤10 x ULN

IMPACT: Baseline demographics

	SMV + SOF + DCV		
	CP A (N=19)	CP B (N=21)	Total (N=40)
Median age, years (range)	56.0 (30–64)	61.0 (50–75)	58.5 (30–75)
Male, n (%)	14 (74)	11 (52)	25 (63)
White, n (%)	18 (95)	21 (100)	39 (98)
Black/African-American, n (%)	1 (5)	0	1 (3)
Hispanic or Latino, n (%)	13 (68)	10 (48)	23 (58)
BMI, median (range)	26.80 (22.7–35.5)	31.80 (21.2–47.0)	28.45 (21.2–47.0)

BMI, body mass index; CP, Child-Pugh; DCV, daclatasvir; SMV, simeprevir; SOF, sofosbuvir

IMPACT: Baseline disease characteristics

	SMV + SOF + DCV		
	CP A (N=19)	CP B (N=21)	Total (N=40)
Median HCV RNA, log ₁₀ IU/mL (range)	5.78 (4.8–6.8)	5.60 (4.0-6.7)	5.72 (4.0-6.8)
Treatment-experienced, n (%)	9 (47)	10 (48)	19 (48)
HCV genotype, n (%)			
1a	15 (79)	11 (52)	26 (65)
NS3 Q80K ^a	9/15 (60)	3/10 (30)	12/25 (48)
1b	3 (16)	10 (48)	13 (33)
4	1 (5)	0	1 (3)
IL28B, non-CC, n (%)	15 (79)	18 (86)	33 (83)
Median albumin, g/dL	4.1	3.2	3.6
Median platelets ×10 ³ /mm ³	106.0	79.0	89.5

^{*}Calculated, among HCV genotype 1a-infected patients in CPB, one genotype 1a-infected patient had no NS3 protease sequencing data available

CP, Child-Pugh; DCV, daclatasvir; HCV, hepatitis C virus; SMV, simeprevir; SOF, sofosbuvir

IMPACT: Baseline disease characteristics

	SMV + SOF + DCV		
	CP A (N=19)	CP B (N=21)	Total (N=40)
Median fibroscan score, kPa (range)	21.80 (14.9–43.5)	30.80 (16.8–75.0)	27.00 (14.9–75.0)
CP score, n (%)			
5	14 (74)	-	14 (35)
6	5 (26)	-	5 (13)
7	-	9 (43)	9 (23)
8	-	8 (38)	8 (20)
9	-	4 (19)	4 (10)
MELD score, n (%)			
<10	12 (63)	10 (48)	22 (55)
≥10-<15	7 (37)	9 (43)	16 (40)
≥15	0	2 (10)	2 (5)

CP, Child-Pugh; DCV, daclatasvir; MELD, model for end-stage liver disease; SMV, simeprevir; SOF, sofosbuvir

[•]There were two patients with MELD score of 16

[•]The transplantation evaluation is typically initiated once a patient has a MELD score >10, and as such this cut-off is widely used in clinical practice and frequently reported in the field

IMPACT: Baseline resistance-associated variants (RAVs): Child-Pugh A

- RAVs with fold change (FC) in 50% effective concentration (EC₅₀) >2, compared with wild type, for SMV (NS3 RAVs), DCV (NS5A RAVs), or SOF (NS5B RAVs) are considered
- No SOF RAVs at positions 159, 282, 316, 320, or 321 were observed at baseline

DCV, daclatasvir; SMV, simeprevir; SOF, sofosbuvir

- One subject (CP-B) did not have sequencing data available in all 3 regions.
- No patient had more than one NS5A polymorphism at baseline (considering NS5A positions 28, 30, 31, 32, and 93)
- •The patient with GT4 did not carry any NS3 or NS5A RAVs at the considered positions
- •All three subjects with NS5A Y93H had GT1b
- •NS5A: In addition, M28V (n=2; both GT1a) and R30Q (n=1; GT1b) were observed at NS5A positions 28, 30, 31, 32, or 93
- NS3: In addition, Q80L (n=1), Q80N (n=1), S122G (n=1), and S122N (n=1) were observed at NS3 positions 43, 80, 122, 155, 1
- •NS3 Q80R and Q80K: SMV FC in EC₅₀ <50 (both in GT1a and GT1b)
- •NS5A Y93H: DCV FC in EC $_{50}$ = 24 in GT1b and 5,432 in GT1a (Fridell et al., Hepatology, 2011)

In vitro data for the observed baseline polymorphisms from SDM analyses in literature

- NS3 Q80K: SMV median FC in EC₅₀ = 7.7
- •NS3 Q80R: SMV median FC in EC₅₀ = 6.9
- •NS3 Q80K & NS5A M28V: SMV median FC in EC₅₀ = 7.7
- NS3 S122N & NS5A Y93H: DCV median FC in EC₅₀ = 19
- •NS3 Q80R & NS5A Y93H: DCV median FC in EC₅₀ = 19
- •NS5A Y93H: DCV median FC in EC₅₀ = 19

IMPACT: Baseline resistance-associated variants (RAVs): Child-Pugh B

- RAVs with fold change (FC) in 50% effective concentration (EC₅₀) >2, compared with wild type, for SMV (NS3 RAVs), DCV (NS5A RAVs), or SOF (NS5B RAVs) are considered
- No SOF RAVs at positions 159, 282, 316, 320, or 321 were observed at baseline

DCV, daclatasvir; SMV, simeprevir; SOF, sofosbuvir

IMPACT: On-treatment and sustained virologic response

CI, confidence interval; CP, Child-Pugh; DCV, daclatasvir; EOT, end of treatment; HCV, hepatitis C virus; SMV, simeprevir, SOF, sofosbuvir; SVR, sustained virologic response 4 (SVR4) or 12 (SVR12) weeks after actual end of treatment

IMPACT: Change in Child-Pugh scores from baseline to follow-up Week 12

IMPACT: Change in MELD scores from baseline to follow-up Week 12

•The observed overall trends in MELD scores were similar to those seen for SOF/LDV + RBV (SOLAR-2 data) and EBR/RBV in patients with liver decompensation

IMPACT: SMV, SOF, and DCV pharmacokinetics following administration of SMV + SOF + DCV

DDI

- ·No DDI analyses performed in this study
- ·SOF has no effect on SMV levels
- •When SMV/SOF are co-administered, there is an increase in SOF levels (C_{max} : 1.91-fold increase; AUC: 3.2-fold increase), but not in GS-33107 levels; therefore, no dose-adjustment is required (see COSMOS)
- In healthy volunteers, SMV increased DCV AUC by approximately 2-fold (DCV USPI), but this did not translate in the LEAGUE st
- •DCV increased SMV exposure by approximately 40% (also confirmed in clinical trials)

IMPACT: Summary of on-treatment adverse events

	SMV + SOF + DCV		
Parameter, n (%)	CP A (N=19)	CP B (N=21)	Total (N=40)
Any AE	11 (58)	16 (76)	27 (68)
Grade 1/2	11 (58)	15 (71)	26 (65)
Grade 3/4	0	1 (5)ª	1 (3)
Treatment-related AEs	3 (16)	7 (33)	10 (25)
Serious AE	0	1 (5)ª	1 (3)
Early discontinuation due to AE	0	0	0
Death	0	0	0

^{*}Grade 3 gastrointestinal hemorrhage, not related to study drugs

IMPACT: Most common on-treatment adverse events (≥2 patients)

	SMV + SOF + DCV		
Parameter, n (%)	CP A (N=19)	CP B (N=21)	Total (N=40)
Pruritus	1 (5)	2 (10)	3 (8)
Urinary tract infection	1 (5)	2 (10)	3 (8)
Photosensitivity reaction	2 (11)	1 (5)	3 (8)
Nausea	1 (5)	2 (10)	3 (8)
Hepatic encephalopathy	0	2 (10)	2 (5)
Anemia	2 (11)	0	2 (5)
Insomnia	0	2 (10)	2 (5)
Irritability	1 (5)	1 (5)	2 (5)

IMPACT: Grade 3/4 treatment-emergent laboratory abnormalities

Parameter, n (%)		SMV + SOF + DCV		
	CP A (N=19)	CP B (N=21)	Total (N=40)	
Bilirubin ^{a,b}				
Grade 3	2 (11)	5 (24)	7 (18)	
Grade 4	0	2 (10)	2 (5)	
Lipase				
Grade 3	0	1 (5)	1 (3)	
Grade 4	1 (5)	0	1 (3)	
Glucose elevations				
Grade 3	1 (5)	1 (5)	2 (5)	
Grade 4	0	1 (5)	1 (3)	

^{*}Bilirubin values re turned to baseline by follow up Week 12

Bilirubin Grade 3 total bilirubin elevation: >2.5-≤5.0 x ULN; Grade 4 total bilirubin elevation: >5.0 x ULN Glucose Grade 3 increase: 251-500 mg/dL; Grade 4 increase: >500 mg/dL or ketoacidosis or seizures

Lipase Grade 3: >3.0-≤5.0 x ULN; Grade 4: >5.0 x ULN

Platelets Grade 3: 20,000-49,000/mm3; Grade 4: <20,000/mm3

Back-up slides

IMPACT: Median total hemoglobin, bilirubin, INR and albumin with SMV + SOF + DCV

IMPACT: Baseline disease characteristics

	SMV + SOF + DCV		
Parameter, n (%)	CP A (N=19)	CP B (N=21)	Total (N=40)
HCV RNA level (IU/mL)			
<400,000	8 (42)	11 (52)	19 (48)
≥400,000-≤800,000	4 (21)	0	4 (10)
>800,000	7 (37)	10 (48)	17 (43)
<6,000,000	18 (95)	21 (100)	39 (98)
≥6,000,000	1 (5)	0	1 (3)

IMPACT: Virologic response over time

BL, baseline; CP, Child-Pugh; D, day; FU, follow-up; HCV, hepatitis C virus; W, week

IMPACT: Virologic response over time

BL, baseline; CP, Child-Pugh; D, day; FU, follow-up; HCV, hepatitis C virus; W, week

IMPACT: On-treatment virologic response (HCV RNA <15 IU/mL undetectable) over time

Acknowledgments

- The authors would like to thank the patients and their families, the study investigators, and the following Texas Liver Institute Staff for their contributions to this study
 - Angie Coste, FNP-C
 - Rossalynn Salcido, PA-C
 - Uroosa Khan, CRC
 - Sam Galley, CCRC
 - Jillian Woodworth, CRC
 - JJ Macaitis, CCRC
 - Joe Reidinger
 - Jessica Latham
 - Lori Gonzales
 - Isabel Reyes

- LeeAnn Gutierrez
- Vicki Fitzhugh
- Kayla Powers
- Elisha Moreno
- Samantha Zuniga
- Joe Lara
- Anthony Sotello
- Linh Ta
 - Jessica Robuck
 - Sam Rojas
 - Azucena Perez
- Medical writing support was provided by Chrissie Kouremenou of Complete Medical Communications and funded by Janssen