Clinical Impact of New Viral Hepatitis Data From San Francisco 2018

CCO Independent Conference Coverage*

of The Liver Meeting 2018; November 9-13, 2018; San Francisco, California

*CCO is an independent medical education company that provides state-of-the-art medical information to healthcare professionals through conference coverage and other educational programs.

This program is supported by educational grants from AbbVie and Gilead Sciences

About These Slides

- Please feel free to use, update, and share some or all of these slides in your noncommercial presentations to colleagues or patients
- When using our slides, please retain the source attribution:

These slides may not be published, posted online, or used in commercial presentations without permission. Please contact <u>permissions@clinicaloptions.com</u> for details

Faculty

Paul Y. Kwo, MD

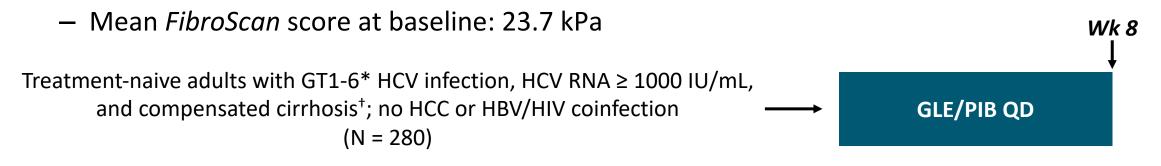
Professor of Medicine Director of Hepatology Stanford University School of Medicine Palo Alto, California

Nancy Reau, MD

Professor of Medicine Chief, Section of Hepatology Associate Director, Solid Organ Transplantation Richard B. Capps Chair of Hepatology Rush University Medical Center Chicago, Illinois

Faculty Disclosures

Paul Y. Kwo, MD, has disclosed that he has received consulting fees from AbbVie, Arrowhead, Bristol-Myers Squibb, Ferring, Gilead Sciences, Johnson & Johnson, Merck, Quest, and Surrozen; has received funds for research support from Assembly, Bristol-Myers Squibb, Gilead Sciences, and La Jolla; has served on data and safety monitoring boards for Durect and Johnson and Johnson; and has ownership interest in Durect.


Nancy Reau, MD, has disclosed that she has received salary from AASLD; consulting fees from Abbott, AbbVie, Gilead Sciences, and Merck; and funds for research support from Genfit, Intercept, and Shire.

Treatment of HCV Infection

EXPEDITION-8: GLE/PIB for 8 Wks in Patients With GT1-6 HCV and Compensated Cirrhosis

- Multicenter, open-label, single-arm phase IIIb study
 - 83% HCV GT1; 90% CP5, 9% CP6, 1% CP7; 17% with platelet count < 100 x 10⁹ cells/L

*GT3 added in protocol amendment with enrollment ongoing; excluded from current analysis. **FibroTest* \geq 0.75 and APRI > 2, *FibroScan* \geq 14.6 kPa, or biopsy at screening.

- Primary endpoint: SVR12
 - ITT: includes all patients receiving ≥ 1 study drug dose; PP: excludes ITT patients with virologic breakthrough or discontinuation before Wk 8, missing data in SVR12 window

EXPEDITION-8: Efficacy and Safety With 8-Wk GLE/PIB

 In ITT and PP analyses, lower bounds of 95% CIs exceeded predefined efficacy thresholds

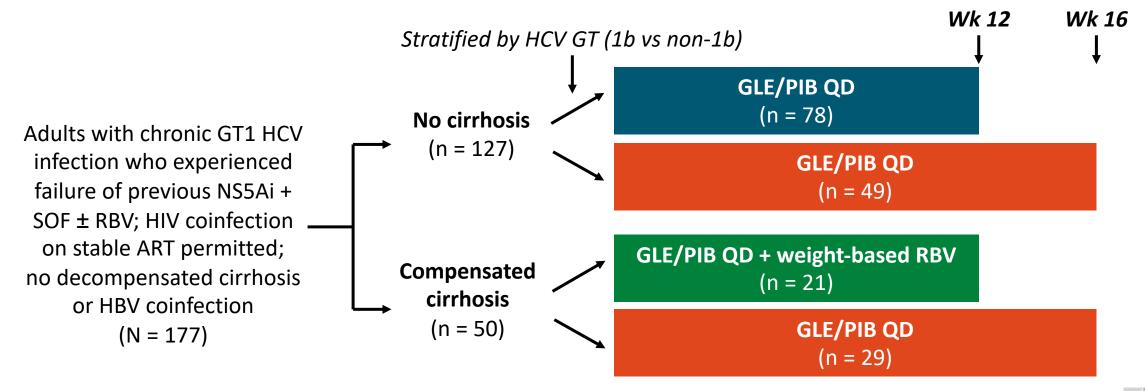
No virologic failures

SVR12, % (n/N)	GLE/PIB
ITT	98 (274/280)*
PP	100 (273/273)*

*Missing SVR12 data, n = 5 (all undetectable at last visit); premature d/c, n = 1. ⁺Excludes ITT nonresponders, n = 6; patient achieving SVR12 with < 8 wks GLE/PIB, n = 1.

No unexpected safety events

 No deaths, HCC, d/c for AEs, single AE in ≥ 10% of patients, notable ALT/AST or bilirubin elevations


AE	GLE/PIB (N = 280)
Any AE, n (%)	134 (48)
Serious AEs, n (%)	6 (2)*
AEs in 5% to < 10% of patients, %	
Pruritus	9.6
 Fatigue 	8.6
Headache	8.2
Nausea	6.4

*Atrial fibrillation, bronchitis, duodenal ulcer hemorrhage, peripheral edema, pneumonia, pyelonephritis; none related to treatment.

Brown. AASLD 2018. Abstr LB-7.

GLE/PIB ± RBV for GT1 HCV After Failure of NS5A Inhibitor + SOF ± RBV

- Multicenter, randomized, open-label phase IIIb study
 - Primary endpoint: SVR12

Efficacy and Safety of GLE/PIB ± RBV for GT1 HCV After Failure of NS5A Inhibitor + SOF ± RBV

	12-\	Vk GLE/PIB ±	RBV	16-Wk GLE/PIB			
Virologic Outcome	All (n = 99)	GT1b (n = 21)	GT1a [†] (n = 78)	All (n = 78)	GT1b (n = 13)	GT1a (n = 65)	
SVR12, %	89	95	87	95	100	94	
Relapse, n	4	0	4	3	0	3	
Breakthrough, n	5	0	5	1	0	1	
Reinfection, n	1	0	1	0	0	0	
Death, n	1	1*	0	0	0	0	

*HCC, not drug related. ⁺Includes n = 4 non-GT1 patients.

- No VF in GT1b; VF in GT1a associated with treatment-emergent RASs
- RBV associated with increased toxicity but not increased efficacy

VA HCV Case Registry: SOF/VEL/VOX in DAA-Experienced Patients With GT1-4 HCV

- Observational ITT cohort analysis of DAA-experienced patients with GT1-4 HCV initiating SOF/VEL/VOX in any VA center with EOT by March 31, 2018 (N = 573)
 - Primary endpoint: SVR where HCV RNA < LLOQ at least 12 wks after EOT

SVR,* % (n/N)		GT1	GT2	GT3	GT4
Overall		90.7 (429/473)	90.0 (18/20)	91.3 (42/46)	100 (12/12)
Cirrhosis	NoYes	91.5 (289/316) 89.2 (140/157)	92.9 (13/14) 83.3 (5/6)	91.3 (21/23) 91.3 (21/23)	100 (5/5) 100 (7/7)
History of decompensation	NoYes	90.5 (391/432) 92.7 (38/41)	88.9 (16/18) 100 (2/2)	91.7 (33/36) 90.0 (9/10)	100 (11/11) 100 (1/1)
Duration of SOF/VEL/VOX	< 12 wks12 wks	46.5 (20/43) 95.1 (409/430)	100 (1/1) 89.5 (17/19)	0 (0/1) 93.3 (42/45)	 100 (12/12)

*n = 22 patients excluded from analysis for lack of HCV RNA measurement \geq 12 wks after EOT.

VA HCV Case Registry: Efficacy in Patients Receiving Full 12-Wk Course of SOF/VEL/VOX by Prior Treatment

SVR With 1	2-Wk SOF/VEL/VOX, % (n/N)	GT1	GT2	GT3
Class of prior treatment	 NS3/4A NS5A NS5B NS3/4A + NS5A NS5A + NS5B PegIFN/RBV 	94 (148/158) 95 (409/430) 95 (352/370) 95 (134/141) 96 (261/272) 95 (37/39)	100 (1/1) 89 (16/18) 90 (17/19) 100 (1/1) 88 (15/17) 100 (4/4)	 93 (37/40) 93 (42/45) 93 (37/40) 100 (3/3)
Prior regimen	 GZR/EBR LDV/SOF ± RBV OBV/PTV/RTV/DSV ± RBV SOF/VEL* SOF + SMV 	96 (68/71) 95 (286/300) 96 (67/70) 82 (14/17) 83 (5/6)	 67 (2/3) 100 (1/1) 86 (12/14) 	 94 (16/17) 85 (11/13)

*P < .05

 In analysis restricted to patients receiving full 12 wks of SOF/VEL/VOX, lower SVR rates in GT2 with prior NS5A and/or NS5B experience, in GT1-3 with prior SOF/VEL

French Compassionate Use Study: SOF/VEL/VOX in Patients With DAA Failure, Compensated Cirrhosis

- Real-world cohort of adults with GT1-5 HCV, compensated cirrhosis, and prior DAA failure of an NS5A inhibitor and/or PI receiving 12-wk SOF/VEL/VOX ± RBV (N = 44)
 - SVR12: 95% (38/40)
 - Serious AEs: n = 2 (liver decompensation, HCC in 1 patient with baseline Child B8 score)
 - Relapse: n = 2, both in patients with prior SOF + DCV

Pt With Relapse*	Age, Yrs	<i>FibroScan,</i> kPa	HCV GT	Baseline RASs	SOF/VEL/VOX	HCV RNA at EOT, IU/mL	Relapse RASs
Male	59	13	1a	NS3, NS5A	12 wks	< 15	Pending
Male	53	16	3a	Y93H	12 wks + RBV	< 12	Pending

*Among n = 40 with \geq 12 wks of follow-up after d/c of treatment.

Additional Data on Real-World Efficacy of SOF/VEL/VOX

- Trio Health: examination of SOF/VEL/VOX initiation (± RBV) from July 2017 to April 2018 in US patients with chronic HCV infection (N = 196)^[1]
 - 88% treatment experienced
 - 73% male, 60% GT1a HCV, 42% cirrhotic

SVR12 by Prior Regimen, % (n/N)	PP	ІТТ
LDV/SOF ± RBV	99 (88/89)	96 (88/92)
SOF/VEL ± RBV	95 (19/20)	95 (19/20)
GZR/EBR ± RBV	100 (17/17)	89 (17/19)
OBV/PTV/RTV/DSV	100 (10/10)	91 (10/11)
Other (SOF-based)	100 (16/16)	94 (16/17)

- DHC-R: examination of SOF/VEL/VOX retreatment (± RBV) as of February 2018 in German patients with chronic HCV infection and prior DAA failure (N = 86)^[2]
 - Prior treatment experience
 - OBV/PTV/RTV/DSV ± RBV, 31%
 - LDV/SOF ± RBV, 30%
 - SOF/VEL ± RBV, 14%
 - 86% male, 64% GT1 HCV, 24% cirrhotic
- SVR12: 100% in 52 evaluable patients

SHARED 2: LDV/SOF Without On-Treatment Laboratory Monitoring in Rwandan Patients With GT4 HCV

- Prospective, open-label, single-arm, single-site study in Rwanda
 - Primary endpoints: SVR12, grade 3/4 AEs, early d/c for AEs

DAA-naive adults with GT4 HCV infection, HCV RNA > 1000 IU/mL; no decompensated cirrhosis, HCC, active HBV/uncontrolled HIV \longrightarrow LDV/SOF QD (N = 60)

Laboratory Assessment	Screen	Entry	Wk 4	Wk 8	Wk 12	Wk 24
HCV GT, HCV/HIV Ab, HBsAg	Х					
HCV RNA	Х		X		X	Х
CBC, CMP	Х		X	X	X	X
PT/INR/albumin		Х				

X = study physician blinded to results; labs reviewed in real time by independent monitor to ensure trial safety.

Wk 12

SHARED 2: Efficacy and Safety

- SVR12: 88% (53/60)
 - Failures: n = 7 (all relapse)
 - Lower SVR12 rate (56%) in subtype
 GT4r due to more frequent RASs
- Adherence ≥ 90% by pill count at Wks 4, 8 in 58 evaluable patients
- In 3 cases, independent monitor released labs to study physician
 - Labs normalized without intervention

 No d/c for AEs or lab abnormalities, grade 4 AEs, or deaths

Grade 3 AE, n	LDV/SOF
Any	11*
 Hypertension 	6
Insomnia	2
 Hyperglycemia 	1
Knee pain	1
Weakness	1

*Occurring in 7 patients; none drug related.

ANCHOR: SOF/VEL in PWID With Chronic HCV and Ongoing Injection Drug Use

- Single-center study at harm reduction organization in Washington, DC
 - 76% men, 93% black, 33% cirrhotic, 58% injected drugs at least daily

Patients with chronic HCV infection, opioid use disorder, and opioid injection in last 3 mos; no decompensated cirrhosis or contraindicated DDIs (N = 100)

- Primary endpoint: SVR12
- Adherence assessments: Wk 4 HCV RNA, treatment interruptions, completion of study drugs, EOT timing vs Wk 12

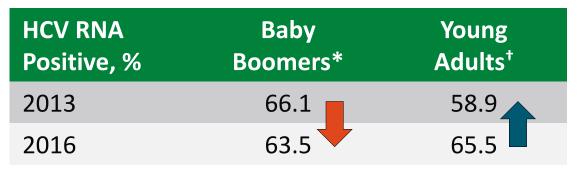
ANCHOR: Efficacy and Adherence

- SVR12 in ITT population: 78% (73/93)
 - Virologic success unaffected by BL demographics such as frequency of drug use, housing stability, MAT
- Through Wk 12 in full study population (N = 100)

Adherence Measure in	ITT Population	SVR12, %	<i>P</i> Value
Wk 4 HCV RNA < 200 IU/mL	 Yes (n = 80) No (n = 8) 	86 25	.0005
No treatment interruptions	 Yes (n = 76) No (n = 12) 	86 67	.22
Completed 2 or 3 of 3 SOF/VEL bottles	 Yes (n = 87) No (n = 6) 	84 0	.0001
Finished SOF/VEL on time (vs late)	 Yes (n = 20) No (n = 43) 	95 88	.65

- SOF/VEL prescriptions dispensed: 92% to 97%
- Visit attendance: 70% to 88%

HCV Continuum of Care


HCV Linkage to Care in the United States: 2013 vs 2016

- Analysis of real-world demographic data, clinical test results from 2 large commercial labs in the United States
 - Limited to patients who underwent HCV antibody screening
- From 2013-2016, proportion with follow-up HCV RNA test increased

Care Step in HCV Ab+ Patients	2013 (N = 179,144)	2016 (N = 287,130)
HCV RNA test performed, %	45.0	76.5
Positive result, %	63.8	63.9
 Saw a specialist,* % (n) 	21.2 (10,903)	17.4 (24,358)

*Gastroenterology, hepatology, infectious disease.

HCV Linkage to Care in the United States: Baby Boomers vs Young Adults

*48-71 yrs of age. ⁺18-39 yrs of age.

- From 2013-2016, treatment rates rose in both groups, with highest increases in baby boomers across provider types
- In 2016, specialist vs PCP visit associated with greater likelihood of treatment

Dationts Engaging in		Linked to S	Specialist	Linked to PCP		
Patients Engaging in Care Step by Yr, %		Baby Boomers*	Young Adults [†]	Baby Young Boomers* Adults ⁺		
Saw provider	20132016	25.4 23.4	17.1 9.2	37.7 40.9	32.6 40.3	
Received treatment after provider visit	20132016	10.6 32.0	15.4 22.6	2.9 8.1	4.2 4.5	

Age-Stratified Examination of HCV Continuum of Care for PWID in Philadelphia

- From 2013-2017, N = 29,820
 HCV Ab+ labs reported to the Philadelphia Dept of Public Health
 - Subset interviewed as part of routine surveillance: n = 5184, 46% of whom self-identified as PWID
 - 76% white in younger cohort; 41% black, 40% white in older cohort
- Linkage to HCV care, treatment rates significantly lower in younger vs older cohort

Care Step in HCV Ab+ PWID, %	≤ 35 Yrs (n = 1239)	> 35 Yrs (n = 1151)
HCV RNA test performed	81	90
HCV RNA positive	75	85
Initiated HCV care* ⁺	41	66
HCV tx initiated or infection resolved ⁺	8	25

*Saw a specialist or had a subsequent HCV RNA measurement > 180 days after initial result. $^{+}P < .0001$ for difference between groups.

Posttreatment HCV Outcomes

C-EDGE CO-STAR: Assessment of HCV Reinfection Risk in Patients on OAT Who Received GZR/EBR

- Part A: GZR/EBR for 12 wks in patients with HCV GT1, 4, or 6 on OAT (N = 296)
 - SVR12: 91% in full analysis set; 97% of patients had > 95% adherence
- Part B: observational follow-up study in patients who received ≥ 1 dose of GZR/EBR; HCV reinfection, drug use assessed (n = 199)
- 10 reinfections during 36 mos following end of HCV treatment
 - Occurred in first 6 mos post-treatment, n = 6
 - Spontaneous clearance, n = 2; persistent viremia, n = 8 (4/8 cleared with retreatment)

Parameter at	All Patients	Ра	rt B*
Posttreatment Mo 36	(n = 296)	IDU (n = 80)	No IDU (n = 119)
Reinfection rate/100 PY (95% CI)	1.8 (0.8-3.3)	2.8 (1.0-6.2)	0.3 (0-1.8)
*IDU self-reported after completion of HC	CV treatment.		\triangleleft

Grebely. AASLD 2018. Abstr 52. NCT02105688.

Slide credit: clinicaloptions.com

C-EDGE CO-STAR: Assessment of Drug Use Behavior in Patients on OAT Who Received GZR/EBR

• Stable drug use patterns through Mo 30 with 15% to 26% reporting IDU

Reported D	Drug Use in	Part B, %	Mo 6 (n = 191)	Mo 12 (n = 17			vlo 24 = 155)	Mo 30 (n = 148)
Injection	PrevioPrevio	us mo us 6 mos	21 25	19 26		7 1	15 20	16 22
Non- injection	PrevioPrevio	us mo us 6 mos	39 45	38 40	-	2 2	39 38	36 39
		Part A	Part B					
Urine Drug	Screen, %	Day 1 (n = 199)	Day 1 (n = 199)	Mo 6 (n = 190)	Mo 12 (n = 177)	Mo 18 (n = 172)	Mo 24 (n = 152)	Mo 30 (n = 142)
Any positiv	e*	59	60	59	62	59	59	53

*Excludes buprenorphine, methadone.

HCC Recurrence Rate After HCV DAA Therapy Among Patients With HCC Complete Response

- Retrospective multicenter cohort study in North American patients achieving CR after ablation, radiation therapy, resection, or TACE/TARE for HCV-related HCC between January 2013 and December 2016 (N = 795)
 - Exclusion criteria: extrahepatic HCC, HCV DAAs before initial HCC, recurrent HCC within 30 days of CR, unknown HCC response
- Primary analysis: association between HCV DAA therapy and time to HCC recurrence by Cox regression
- Significant BL differences between HCV DAA-treated vs DAA-untreated cohorts in type (P < .001) and number (P = .04) of HCC treatments leading to CR, Child-Pugh at CR (P < .001)

HCC Recurrence After DAA Therapy: Outcomes

- HCC recurrence with median follow-up of 10.4 mos^[1]
 - DAA treated: all, n = 128; early, n = 52
 - DAA untreated: all, n = 289; early, n = 228

HCC Recurrence ^[1]	aHR (95% CI)			
	Overall	Early		
Time-dependent exposure*	0.90 (0.70-1.16)	0.96 (0.96-1.33)		
DAA start time after	HCC CR			
■ ≤ 6 mos ■ > 6 mos	0.90 (0.67-1.21) 0.90 (0.64-1.27)	1.04 (0.74-1.47) 0.55 (0.22-1.38)		
Adjusted for age, sex, site, CP, AFP, tumor burden, HCC therapy.				

- No increased risk of HCC recurrence (early or overall) in patients receiving DAA therapy after CR for HCV-related HCC^[1]
 - Finding consistent across predefined subgroups
- In a separate, prospective evaluation of 163 Sicilians with HCV cirrhosis and CR by resection or ablation after early HCC^[2]
 - No difference in HCC recurrence, improved OS (P = .03) and rate of hepatic decompensation (P = .02), with DAA initiation vs matched, DAA-untreated controls

1. Singal. AASLD 2018. Abstr 92. 2. Cabibbo. AASLD 2018. Abstr 95.

*Stratified by receipt of DAA therapy.

Slide credit: <u>clinicaloptions.com</u>

HCV D+R- Transplantation

HCV D+R- Liver Transplantation

- Retrospective analysis of liver transplantation from April 2014 to January 2018 in the Scientific Registry of Transplant Recipients; HCV treatment status unknown (N = 16,858)
- Increasing use of HCV NAT+ donors
 - 2014: 8 D+R+, 0 D+R- vs 2017: 269 D+R+, 46 D+R-
- Similar graft survival rates in HCV-negative pts receiving D+ vs D- livers

Graft Survival, %	D+R+ (n = 753)	D+R- (n = 87)	D-R+ (n = 4748)	D-R- (n = 11,270)
Yr 1	94.3	92.8	92.9	92.6
Yr 2	89.7	85.7	88.0	88.3

Preemptive DAAs in HCV D+R- Cardiac Transplantation

- Open-label, single-center, proof-of-concept trial in HCV-negative patients awaiting cardiac transplantation and willing to receive an HCV-positive donor heart (N = 25)
 - NAT+ donor heart, n = 20
 - VAD as bridge, n = 16; long-term inpatients, n = 13
- Pan-genotypic DAA therapy initiated preemptively immediately prior to transplantation if BL NAT+ or with return of HCV RNA if BL NAT-
 - GLE/PIB for 8 wks
 - All patients monitored to Wk 52 for HCV Abs, HCV RNA, and LFTs

Efficacy of Preemptive DAAs in HCV D+R- Cardiac Transplantation

 Viral suppression achieved by posttransplant Day 9 in all NAT+ recipients

Median HCV RNA, IU/mL	NAT+ Heart Recipients (n = 20)
Donor	3,000,000
Peak recipient	500

- As of November 10, 2018, 12/25 patients have reached the SVR12 time point
 - HCV RNA undetectable in all

- No HCV/DAA-related AEs or serious AEs
- No lapse in or d/c of DAAs for drug reactions or interactions
- Reduced time to transplantation resulted in an estimated \$3.4 million in cost savings

Outcome	HCV Protocol	Standard Protocol
Median pretransplant wait time,* days (IQR)	11.5 (5-35)	113.0 (40-366)
* <i>P</i> = .0001		

Slide credit: clinicaloptions.com

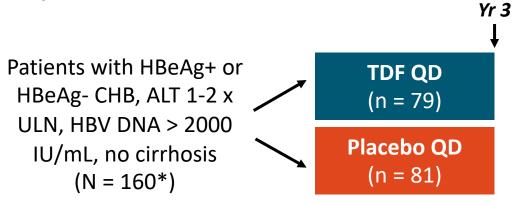
Bethea. AASLD 2018. Abstr 7.

HCV D+R- Lung Transplantation

- Prospective study of single or bilateral lung transplantation from HCV NAT+ donors to HCV- recipients (N = 20)
 - Ex vivo lung perfusion for 6 hrs to reduce HCV RNA; postoperative HCV RNA monitoring; SOF/VEL for 12 wks if HCV RNA > 1000 IU/mL
- 90-day survival: 100%
- 19/20 recipients infected with HCV within 1 wk after transplantation
 - Median time to DAAs: 21 days
 - Viral relapse after SVR12: 25% (2/8)

Managing HBV Infection

HBsAg Seroclearance in Untreated Patients With CHB


- Retrospective cohort study of untreated patients with CHB in North America (n = 1635) and Asia (n = 8979)
- Male sex, higher age or ALT level, HBeAg negativity predicted spontaneous HBsAg seroclearance in multivariable analysis
- Annual HBsAg seroclearance rate: 1.33% (95% CI: 1.26% to 1.40%)
 - CIR: 4.92% at 5 yrs, 11.27% at 10 yrs, 19.36% at 15 yrs, 25.42% at 20 yrs

BL Chara	octeristic	aHR* (95% CI)	<i>P</i> Value
Sex	FemaleMale	1 1.17 (1.04-1.33)	.012
Age, yrs	 < 35 35-44 45-54 > 55 	1 1.25 (1.06-1.48) 1.52 (1.28-1.80) 1.79 (1.49-2.15)	.009 < .001 < .001
HBeAg status	NegativePositive	1 0.25 (0.19-0.32)	< .001
ALT	 Every 10 U/L increase 	1.01 (1.00-1.01)	< .001

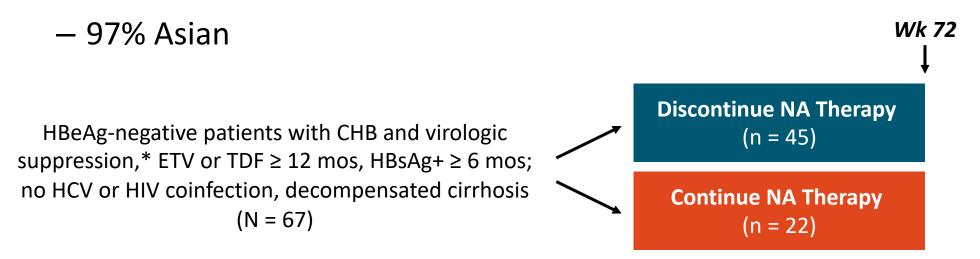
*Adjusted for age, sex, race, study setting, BL cirrhosis, ALT level, and HBeAg status.

TDF vs Placebo for Patients With HBsAg-Positive CHB and Mild ALT Elevation

 Multicenter, randomized, triple-blind phase IV trial

*Results for 132 patients completing treatment with paired biopsy; last patient to finish in December 2018.

 Primary endpoint: histological progression of liver fibrosis, resolution of necroinflammation


Baseline Characteristic	TDF (n = 65)	Placebo (n = 67)
Fibrosis stage, %		
• 0	9.2	10.5
■ 1	43.1	34.3
■ 2	35.4	28.4
■ 3	9.2	13.4
4	3.1	13.4
HBeAg positive, %	20.0	26.9
Median HBsAg, log IU/mL (IQR)	3.03 (2.39-3.61)	3.15 (2.61-3.84)

TDF vs Placebo for Patients With HBsAg-Positive CHB and Mild ALT Elevation: Key Findings

Outcome at Yr 3	TDF (n = 65)	Placebo (n = 67)	P Value
 Progression, n (%) In fibrosis stage* To cirrhosis[†] 	15 (23.1) 2 (3.1)	30 (44.8) 9 (13.4)	.01 .05
Inflammation score, n (%) Median (IQR) Decrease	2 (1-2) 34 (52.3)	3 (2-4) 29 (43.3)	.0004 .38
Undetectable HBV DNA, [‡] %	81.5	13.4	< .0001
ALT normalization, %	75.4	52.2	.007
Entecavir given for clinical flare, n	2	10	NR
HCC, n	2	1	1.0
HBsAg loss, n	0	1	1.0
HBeAg loss in HBeAg-positive patients, n/N (%)	2/13 (15.4)	5/18 (27.8)	.67
*RR: 0.52 (95% CI: 0.31-0.85). [†] RR: 0.23 (95% CI: 0.06-0.88) AASLD 2018. Abstr 264.). [‡] < 6 IU/mL.		Slide credit: <u>clinicaloptions</u>

STOP: Nucleos(t)ide Analogue Cessation in HBeAg-Negative Patients With CHB

Prospective, randomized, controlled, open-label phase IV trial

*If HBeAg+ at NA start, HBeAg seroconversion + undetectable HBV DNA ≥ 12 mos; if HBeAg-, undetectable HBV DNA ≥ 36 mos.

Primary endpoint: HBV DNA < 2000 IU/mL at Wk 48</p>

Patients retreated for HBeAg seroreversion, HBV DNA > 2000 IU/mL + (ALT > 5 x ULN at 2 consecutive visits or > 15 x ULN at any visit), or HBV DNA > 20,000 IU/mL at 2 consecutive visits; ALT ULN: 40 IU/mL.

STOP: Virologic and Safety Outcomes

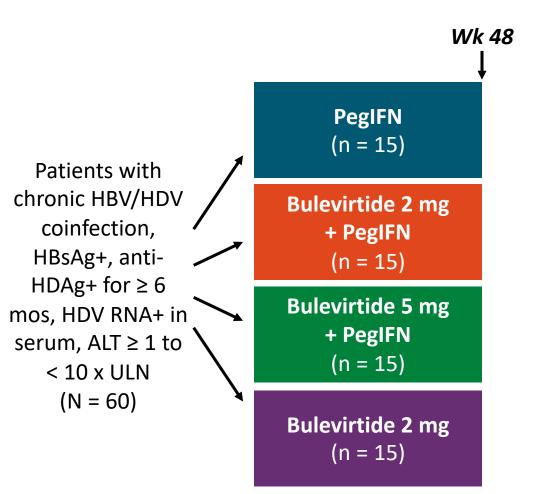
Outcome, n (%)	Stop (n = 45)	Continue (n = 22)
HBV DNA < 2000 IU/mL	11 (24) 12 (27)	21 (95) NR
ALT ■ Grade 3 (> 5 x ULN) ■ Grade 4 (> 20 x ULN)	22 (49) 7 (16)	0 0

*Primary endpoint.

 Limited HBsAg decline across arms

	Stop (n = 45)				
Wk 0	Wk 24	Wk 48	Wk 72		
0	27	29	38		
0	7	4	13		
0	33	40	20		
100	31	24	27		
0	2	2	2		
	0 0 0 0 100 0	0 24 0 27 0 7 0 33 100 31	0244802729074033401003124022		

⁺HBV DNA > 2000 IU/mL + ALT > 1.5 x ULN. [‡]Lone HBV DNA > 2000 IU/mL. [§]HBeAg negative + HBV DNA < 2000 IU/mL + ALT < 1.5 x ULN.


Predictors of Relapse After NA Cessation in CHB

- Unmet need for biomarkers to assess risk of treatment withdrawal
 - Data from multiple small prospective studies support use of HBcrAg and/or HBsAg to predict risk of relapse

Prospective Study	Findings
(N = 135) ^[1]	 HBcrAg, HBsAg independently predict off-treatment clinical relapse, can be combined with age, ALT, and TDF use in novel risk score
DARING-B (N = 60) ^[2]	 HBsAg loss associated with lower levels of HBsAg at ETV/TDF d/c HBcrAg levels at d/c, 1 mo before retreatment predict probability of retreatment
(N = 103) ^[3]	 Significantly lower HBV reactivation rate in patients with BL HBsAg ≤ vs > 10 IU/mL Lower BL HBcrAg level associated with reduced HBV reactivation rate in patients with BL HBsAg > 20 IU/mL
(N = 15) ^[4]	 HBcrAg or pregenomic HBV RNA at TDF d/c may predict significant ALT flares necessitating retreatment

MYR203: Bulevirtide ± PegIFN in Patients With Chronic HBV/HDV Coinfection

- Interim analysis of randomized, multicenter, open-label phase II study
 - Bulevirtide: first-in-class, investigational HBV/HDV entry inhibitor
 - Synthetic peptide that blocks bile salt transporter NTCP
 - Self-administered SC QD
- Primary endpoint: undetectable HDV RNA at Wk 72

MYR203: Efficacy and Safety


Wk 48 Outcome	PegIFN (n = 15)	Bulevirtide 2 mg + PegIFN (n = 15)	Bulevirtide 5 mg + PegIFN (n = 15)	Bulevirtide 2 mg (n = 15)
Median Δ from BL in HDV RNA, \log_{10}	-1.14	-3.62	-4.48	-2.84
Undetectable HDV RNA, n	2	9	6	2
ALT normalization, n	4	4	7	10
Combined treatment response,* n	2	4	6	8
HBsAg response, ⁺ n	0	7	2	0
Asymptomatic rise in bile salts, %	67	60	87	53

*Undetectable or \geq 2 log₁₀ IU/mL decline in HDV RNA + normal ALT. ⁺Undetectable or \geq 1 log₁₀ decline.

- 95% (57/60) completed 48 wks of treatment; 13.6% (6/44) missed bulevirtide doses
- Most bulevirtide-related AEs were mild to moderate (none serious, none causing d/c), not dose dependent, resolved without intervention or sequelae

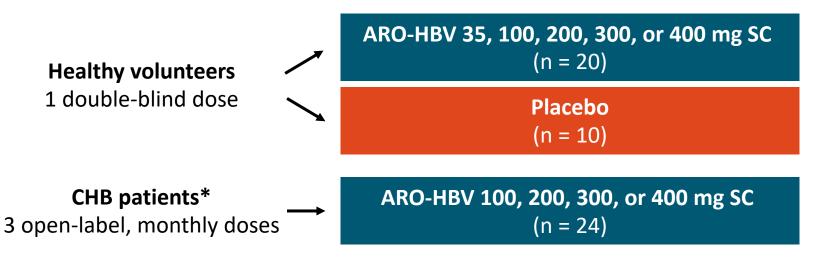
JNJ-6379 in Treatment-Naive Patients With CHB

- Phase I dose-escalating study in the European Union and Asia/Pacific
 - JNJ-6379: investigational capsid assembly modulator

Main endpoints including: safety, PK, antiviral activity

JNJ-6379 in CHB: Safety and Efficacy

- No drug-related serious AEs; 1 d/c for AEs (grade 4 ALT, grade 3 AST elevation at Day 8 in 150-mg group)
- Mean HBV DNA and RNA levels declined with JNJ-6379, regardless of dose
 - No relevant changes observed in HBsAg or HBeAg
- Dose-proportional pharmacokinetics, with similar clearance between doses


Outcome		Placebo			
Outcome	25 mg (n = 8)	75 mg (n = 8)	150 mg (n = 9)	250 mg (n = 9)	(n = 14)
≥ 1 AE, n (%)	5 (63)	4 (50)	6 (67)	4 (44)	9 (64)
Mean ∆ from BL at Day 28 ■ HBV DNA, log ₁₀ IU/mL (SD) ■ HBV RNA, log ₁₀ c/mL (SD)	-2.16 (0.49) -2.30 (0.59)	-2.89 (0.48) -1.85 (1.42)	-2.70 (0.53) -1.83 (0.93)*	-2.70 (0.33) -1.43 (1.13)	-0.11 (0.36) 0.02 (1.10)

*n = 8 evaluable.

Zoulim. AASLD 2018. Abstr 74.

AROHBV1001: RNAi in Healthy Volunteers, Patients With CHB

- Interim analysis of phase I/IIa dose-escalating study
 - ARO-HBV: 2 siRNAs directly conjugated to N-acetyl galactosamine

*HBeAg positive or negative, treatment naive or experienced at BL; untreated patients began daily nucleos(t)ide therapy on Day 1.

Main endpoints including: safety/tolerability, HBsAg reduction

AROHBV1001: Safety and Efficacy

Safaty Outcome a	Healthy V	CHB Patients	
Safety Outcome, n -	ARO-HBV (n = 20)	Placebo (n = 10)	
Any AE in > 1 individual	39	17	22
Injection-site reactions	2*	0	7*

*Bruising, tenderness. *Erythema, bruising/hematoma, rash, tenderness.

- No serious AEs
- 12% of subcutaneous injections in CHB patients accompanied by an AE
 - All were mild in severity

- Mean nadir HBsAg reduction:
 -1.9 log₁₀ (range: -1.3 to -3.8)
 - Similar responses across CHB dose cohorts, regardless of previous treatment experience or HBeAg status

Go Online for More CCO Coverage of San Francisco 2018!

Capsule Summaries and downloadable slidesets on key viral hepatitis and NAFLD/NASH data

On-demand audio and **ClinicalThought commentaries** with expert perspectives on how conference data will change practice

clinicaloptions.com/SanFrancisco2018

CLINICAL CARE OPTIONS® HEPATITIS